Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes.

نویسندگان

  • Xin Shen
  • Lili Sun
  • Enrico Benassi
  • Ziyong Shen
  • Xingyu Zhao
  • Stefano Sanvito
  • Shimin Hou
چکیده

We present a theoretical study of the spin transport through a manganese phthalocyanine (MnPc) molecule sandwiched between two semi-infinite armchair single-walled carbon nanotube (SWCNT) electrodes. Ab initio modeling is performed by combing the nonequilibrium Green's function formalism with spin density functional theory. Our calculations show that MnPc not only can act as a nearly perfect spin filter, but also has a large transmission around the Fermi level, which is dominated by the highest occupied molecule orbital (HOMO). The HOMO of MnPc is found to be a singly filled doubly degenerate molecular orbital, where the electrodes' Fermi level can easily pin. The spin filter effect of MnPc is very robust regardless of whether the open ends of the SWCNT electrodes are terminated by hydrogen, fluorine, or carbon dimers, demonstrating its promising applications in future molecular spintronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport in carbon nanotubes

We present transport measurements of ferromagnetically contacted carbon nanotubes. In both singleand multi-walled nanotube devices, a spin valve effect is observed due to spin-polarized transport. In one single-walled nanotube device, the spin-valve effect is suppressed as the influence of Coulomb charging is observed at around 10 K. To help understand the interplay between the Coulomb charging...

متن کامل

Spin transport properties of 3d transition metal(II) phthalocyanines in contact with single-walled carbon nanotube electrodes.

The spin transport properties of a series of 3d transition metal(ii) phthalocyanines (MPc, M = Mn, Fe, Co, Ni, Cu and Zn) sandwiched between two semi-infinite armchair single-walled carbon nanotube electrodes are investigated by using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with spin density functional theory. Our calculations show that ...

متن کامل

Single walled carbon nanotube in the reaction layer of gas diffusion electrode for oxygen reduction reaction

In this paper, the effect of surface area of reaction layers in gas diffusion electrodes on oxygen reduction reaction was investigated. For this purpose, various amounts (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5 and zero %wt of total loading of reaction layer) of single walled carbon nanotube (SWCNT) were inserted in the reaction layer. The performance of gas diffusion electrodes for oxygen reduction re...

متن کامل

Synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite

In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...

متن کامل

Synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite

In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 5  شماره 

صفحات  -

تاریخ انتشار 2010